DEGREE OF MASTER OF SCIENCE

MATHEMATICAL MODELLING AND SCIENTIFIC COMPUTING

B2 Further Numerical Linear Algebra and Continuous Optimization

HILARY TERM 2018 FRIDAY, 20 April 2018, 9.30am to 11.30am

Candidates should submit answers to a maximum of four questions for credit that include an answer to at least one question in each section.

Please start the answer to each question in a new answer booklet. All questions will carry equal marks.

Do not turn this page until you are told that you may do so

Section A: Further Numerical Linear Algebra

- 1. Let Π_m denote the set of real polynomials of degree m or less.
 - (a) [6 marks] Given $A \in \mathbb{R}^{n \times n}$ and $r \in \mathbb{R}^n$, what are the Krylov subspaces $\mathcal{K}_k(A, r), k = 1, 2, \ldots$? For any non-negative integer ℓ , show that if s = p(A)r with $p \in \Pi_\ell$, then $s \in \mathcal{K}_{\ell+1}(A, r)$. Calculate all of the Krylov subspaces when

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & 0 \\ 1 & 1 & 0 \end{bmatrix}, r = \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix}$$
(1).

- (b) [1 mark] In general, why are Krylov subspaces more convenient for computation when A is a sparse matrix than when A is a dense matrix?
- (c) [9 marks] Without describing the details of the implementation of the method itself, give the criteria which determine the *GMRES* method for the iterative solution of a linear system Ax = b, where A is nonsingular. Derive a convergence bound for GMRES which bounds the Euclidean norm of the residual vectors $r_k = b - Ax_k$ for a diagonalisable matrix $A = X\Lambda X^{-1}$, where Λ is the diagonal matrix of eigenvalues of A. If it happens that $A = A^T$, what simplifies in the method?
- (d) [9 marks] Now apply GMRES to the specific matrix in (1) together with

$$b = \begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix} \text{ and } x_0 = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}.$$

Show that $x_1 = x_0$, and calculate the GMRES residual vectors r_2 and r_3 . In fact the eigenvalues of A are 2, -1, -1. Reconcile the convergence bound that you have derived with the residuals that you find.

2. The Conjugate Gradient method:

choose x_0 , $r_0 = b - Ax_0 = p_0$ and for k = 0, 1, 2, ...

$$\alpha_{k} = p_{k}^{T} r_{k} / p_{k}^{T} A p_{k}$$

$$x_{k+1} = x_{k} + \alpha_{k} p_{k}$$

$$r_{k+1} = r_{k} - \alpha_{k} A p_{k}$$
if $r_{k+1} = 0$, stop : x_{k+1} is the solution
$$\beta_{k} = -p_{k}^{T} A r_{k+1} / p_{k}^{T} A p_{k}$$

$$p_{k+1} = r_{k+1} + \beta_{k} p_{k}.$$

is an iterative method for the solution of linear systems of equations, Ax = b.

- (a) [3 marks] What properties must the matrix $A \in \mathbb{R}^{n \times n}$ have for the Conjugate Gradient method to be robustly applicable? What quantity is minimised at each iteration of the Conjugate Gradient method?
- (b) [16 marks] Given that the residuals, $r_k, k = 0, 1, 2, ...$ and search directions, $p_k, k = 0, 1, 2, ...$ generated by the Conjugate Gradient method satisfy the orthogonality relations

$$r_k^T p_j = r_k^T r_j = 0 , j < k$$

 $p_k^T A p_j = 0 , j < k , (p_k^T A p_k \neq 0)$

so long as $x_k \neq x$, where x is the solution of Ax = b, prove that

$$span\{r_0, r_1, \dots, r_{k-1}\} = span\{p_0, p_1, \dots, p_{k-1}\}$$
$$= span\{r_0, Ar_0, A^2r_0, \dots, A^{k-1}r_0\}.$$

Furthermore, prove that $x_k - x_0 \in \text{span}\{r_0, Ar_0, A^2r_0, \dots, A^{k-1}r_0\}.$

(c) [6 marks] If $P \in \mathbb{R}^{n \times n}$ is a symmetric projection matrix (so that $P = P^T$, $P^2 = P$) and A = P + 2I, what is the maximum number of Conjugate Gradient iterations that will be required to solve Ax = b with any starting vector, x_0 ?

If $Q \in \mathbb{R}^{n \times n}$ is a oblique projection matrix (so that $Q \neq Q^T$, $Q^2 = Q$) and B = Q + 2I, what is the maximum number of Conjugate Gradient iterations that will be required to solve $B^T B y = c$ with any starting vector, x_0 ?

Section B: Continuous Optimization

3. (a) Consider the unconstrained optimization problem

$$\min_{x \in \mathbb{R}^n} f(x),\tag{1}$$

where $f : \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable and bounded below. Assume that the gradient ∇f of f is Lipschitz continuous with Lipschitz constant L > 0. Assume that the steepest descent method with linesearch is applied to (1) starting from some point $x^0 \in \mathbb{R}^n$, and where on each iteration $k \ge 0$, the stepsize $\alpha^k > 0$ is computed so as to satisfy the Armijo condition.

State the Armijo condition. Show that, on each iteration $k \ge 0$ for which $\nabla f(x^k) \ne 0$, the Armijo condition is satisfied for all stepsize values $\alpha^k \in (0, \alpha_{\max}]$, where α_{\max} is a constant independent of k but dependent on L. [Marks 10] Assume that $\alpha^k = \alpha_{\max}$ for all $k \ge 0$. Show that the resulting steepest descent variant is globally convergent, namely, $\nabla f(x^k) \rightarrow 0$ as $k \rightarrow \infty$. [Marks 5]

(b) Consider the following function of two variables $x = (x_1 \ x_2)^T$,

$$f(x) = \frac{1}{4}x_1^4 + x_1x_2 + \frac{1}{2}(1+x_2)^2.$$
 (2)

Show that Newton's method (with or without linesearch) cannot be applied satisfactorily to minimize f(x) if the starting point for Newton's method is $x^0 = (0 \ 0)^T$.

[Marks 6]

Now assume that at $x^0 = (0 \ 0)^T$, a modified Newton direction \tilde{s}^0 is computed where in place of $\nabla^2 f(x^0)$, we use the modified Hessian matrix $\nabla^2 f(x^0) + \nu I$ for some scalar ν and where I is the 2 × 2 identity matrix. Determine the range of ν values that would make this modified Newton direction \tilde{s}^0 suitable for minimizing f(x) from x^0 (when a linesearch is allowed along this modified Newton direction). [Marks 4]

4. Consider the trust-region subproblem

$$\min_{s \in \mathbb{R}^n} m(s) = c + s^T g + \frac{1}{2} s^T H s \quad \text{subject to} \quad \|s\| \leqslant \Delta \tag{3}$$

where $c \in \mathbb{R}$, $g \in \mathbb{R}^n$, $g \neq 0$, and H is an $n \times n$ symmetric matrix, where $\|\cdot\|$ denotes the Euclidean vector norm and $\Delta > 0$.

- (a) Let the Cauchy point s_C for (3) be defined as $s_C = -\alpha_C g$ where $\alpha_C = \arg \min_{\alpha>0} m(-\alpha g)$ subject to $\|-\alpha g\| \leq \Delta$. Calculate an explicit expression for s_C as a function of g, H and Δ . [Marks 5]
- (b) State (without proof) the necessary and sufficient optimality conditions that hold at a global minimizer s^* of (3). [Marks 5]
- (c) In (3), let $n = 3, c = 0, \Delta = 1$ and

$$H = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix} \quad \text{and} \quad g = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$
(4)

For these values, calculate

- 1. the Cauchy point of (3);
- 2. the global minimizer of (3);
- 3. the global minimizer of (3) when s is further constrained to belong to the subspace spanned by the vectors g and Hg.

Briefly compare the resulting decreases m(0) - m(s), where s is each of the calculated minimizers in (1), (2) and (3) above. [Marks 15] 5. (a) A minimization algorithm is applied to

$$\min_{(x_1, x_2, x_3) \in \mathbb{R}^3} x_1^2 + x_2^2 + x_3^2 \quad \text{subject to } x_1 - 1 \ge 0, \ x_1 + 4x_2 - 5 \ge 0, \ \text{and } x_1 + x_3 - 2 \ge 0.$$
(5)

It reaches the point $(\overline{x}_1, \overline{x}_2, \overline{x}_3)^T = (1, 1, 1)^T$; is this point a (local or global) minimizer of (5)? If not, find a feasible search direction from the point $(\overline{x}_1, \overline{x}_2, \overline{x}_3)^T$ that reduces the objective function. [Marks 10]

(b) Consider the equality-constrained optimization problem,

$$\min_{x \in \mathbb{R}^n} f(x) \quad \text{subject to} \quad c(x) = 0, \tag{6}$$

where $f : \mathbb{R}^n \to \mathbb{R}$ and $c : \mathbb{R}^n \to \mathbb{R}^m$ with $c(x) = (c_1(x), \ldots, c_m(x))^T$ are continuously differentiable functions, and $m \leq n$.

Assuming a suitable constraint qualification holds (that you do not need to define), show that any local minimizer of (6) is a KKT point of (6). [Marks 15]

6. (a) Consider the equality-constrained optimization problem,

$$\min_{x \in \mathbb{R}^3} x_1^2 + x_2^2 + x_3^2 \quad \text{subject to} \quad x_1 + 2x_2 + x_3 - 1 = 0, \tag{7}$$

where $x = (x_1 \ x_2 \ x_3)^T$. Calculate the (unconstrained) global minimizer(s) $x(\sigma)$ of the quadratic penalty function associated to (7), denoted by $\Phi_{\sigma}(x)$, for any $\sigma > 0$. Show that $x(\sigma)$ converges to the solution x^* of problem (7), as $\sigma \to 0$, and find the rate of this convergence as a function of σ . Let $\nabla^2_{xx} \Phi_{\sigma}(x(\sigma))$ be the Hessian matrix of Φ_{σ} evaluated at $x(\sigma)$. Show that the condition number of $\nabla^2_{xx} \Phi_{\sigma}(x(\sigma))$ grows unboundedly as $\sigma \to 0$. [Marks 11] [Hint for part (a): you may assume (without proof) that the solution of problem (7) is $x^* = \left(\frac{1}{6} \ \frac{1}{3} \ \frac{1}{6}\right)^T$ with optimal Lagrange multiplier $y^* = \frac{1}{3}$.]

(b) Consider the equality-constrained optimization problem,

$$\min_{x \in \mathbb{R}^n} f(x) \quad \text{subject to} \quad c(x) = 0, \tag{8}$$

where $f : \mathbb{R}^n \to \mathbb{R}$ and $c : \mathbb{R}^n \to \mathbb{R}^m$ with $c(x) = (c_1(x), \dots, c_m(x))^T$ are twice continuously differentiable functions, and $m \leq n$. Consider the system

$$F_{\sigma}(x,y) := \begin{pmatrix} \nabla f(x) - J(x)^T y \\ c(x) + \sigma y \end{pmatrix} = 0,$$
(9)

where $(x, y) \in \mathbb{R}^{n+m}$ and $\sigma > 0$, and ∇f and J denote the gradient of f and the Jacobian of the constraints c, respectively.

- (i) Establish a connection between solutions of the system (9) and stationary points of the quadratic penalty function $\Phi_{\sigma}(x)$ associated to (8). [Marks 4]
- (ii) Consider the following primal-dual quadratic penalty method that starts from some starting point (x^0, y^0) and $\sigma^1 > 0$. On each iteration $k \ge 1$, starting from (x^{k-1}, y^{k-1}) and $0 < \sigma^k < \sigma^{k-1}$, it computes an approximate root (x^k, y^k) of $F_{\sigma^k}(x, y) = 0$ such that

$$\|F_{\sigma^k}(x^k, y^k)\| \leqslant \epsilon^k,$$

where $\|\cdot\|$ denotes the Euclidean norm and $\epsilon^k > 0$. By imposing conditions on ϵ^k and σ^k , state a theorem of global convergence for this primal-dual quadratic penalty method. In the conditions of the theorem you state, and assuming that $(x^k, y^k) \rightarrow$ (x^*, y^*) as $k \rightarrow \infty$, show that x^* is a KKT point of (8) with multiplier y^* . [Marks 10]