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Section A: Further Numerical Linear Algebra

1. Let Πm denote the set of real polynomials of degree m or less.

(a) [6 marks] Given A ∈ Rn×n and r ∈ Rn, what are the Krylov subspaces Kk(A, r), k =
1, 2, . . .? For any non-negative integer `, show that if s = p(A)r with p ∈ Π`, then
s ∈ K`+1(A, r). Calculate all of the Krylov subspaces when

A =

 1 0 2
0 −1 0
1 1 0

 , r =

 3
0
0

 (1).

(b) [1 mark] In general, why are Krylov subspaces more convenient for computation when A
is a sparse matrix than when A is a dense matrix?

(c) [9 marks] Without describing the details of the implementation of the method itself, give
the criteria which determine the GMRES method for the iterative solution of a linear
system Ax = b, where A is nonsingular. Derive a convergence bound for GMRES which
bounds the Euclidean norm of the residual vectors rk = b − Axk for a diagonalisable
matrix A = XΛX−1, where Λ is the diagonal matrix of eigenvalues of A.

If it happens that A = AT , what simplifies in the method?

(d) [9 marks] Now apply GMRES to the specific matrix in (1) together with

b =

 1
−1
0

 and x0 =

 0
0
0

 .
Show that x1 = x0, and calculate the GMRES residual vectors r2 and r3. In fact the
eigenvalues of A are 2,−1,−1. Reconcile the convergence bound that you have derived
with the residuals that you find.
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2. The Conjugate Gradient method:
choose x0 , r0 = b−Ax0 = p0 and for k = 0, 1, 2, . . .

αk = pTk rk/p
T
kApk

xk+1 = xk + αkpk

rk+1 = rk − αkApk
if rk+1 = 0, stop : xk+1 is the solution

βk = −pTkArk+1/p
T
kApk

pk+1 = rk+1 + βkpk.

is an iterative method for the solution of linear systems of equations, Ax = b.

(a) [3 marks] What properties must the matrix A ∈ Rn×n have for the Conjugate Gradient
method to be robustly applicable? What quantity is minimised at each iteration of the
Conjugate Gradient method?

(b) [16 marks] Given that the residuals, rk, k = 0, 1, 2, . . . and search directions, pk, k =
0, 1, 2, . . . generated by the Conjugate Gradient method satisfy the orthogonality relations

rTk pj = rTk rj = 0 , j < k

pTkApj = 0 , j < k , (pTkApk 6= 0)

so long as xk 6= x, where x is the solution of Ax = b, prove that

span{r0, r1, . . . , rk−1} = span{p0, p1, . . . , pk−1}
= span{r0, Ar0, A2r0, . . . , A

k−1r0}.

Furthermore, prove that xk − x0 ∈ span{r0, Ar0, A2r0, . . . , A
k−1r0}.

(c) [6 marks] If P ∈ Rn×n is a symmetric projection matrix (so that P = P T , P 2 = P ) and
A = P + 2I, what is the maximum number of Conjugate Gradient iterations that will be
required to solve Ax = b with any starting vector, x0?

If Q ∈ Rn×n is a oblique projection matrix (so that Q 6= QT , Q2 = Q) and B = Q + 2I,
what is the maximum number of Conjugate Gradient iterations that will be required to
solve BTBy = c with any starting vector, x0?
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Section B: Continuous Optimization

3. (a) Consider the unconstrained optimization problem

min
x∈Rn

f(x), (1)

where f : Rn → R is continuously differentiable and bounded below. Assume that the
gradient ∇f of f is Lipschitz continuous with Lipschitz constant L > 0. Assume that
the steepest descent method with linesearch is applied to (1) starting from some point
x0 ∈ Rn, and where on each iteration k > 0, the stepsize αk > 0 is computed so as to
satisfy the Armijo condition.

State the Armijo condition. Show that, on each iteration k > 0 for which ∇f(xk) 6= 0,
the Armijo condition is satisfied for all stepsize values αk ∈ (0, αmax], where αmax is a
constant independent of k but dependent on L. [Marks 10]

Assume that αk = αmax for all k > 0. Show that the resulting steepest descent variant is
globally convergent, namely, ∇f(xk)→ 0 as k →∞. [Marks 5]

(b) Consider the following function of two variables x = (x1 x2)
T ,

f(x) =
1

4
x41 + x1x2 +

1

2
(1 + x2)

2. (2)

Show that Newton’s method (with or without linesearch) cannot be applied satisfactorily
to minimize f(x) if the starting point for Newton’s method is x0 = (0 0)T .

[Marks 6]
Now assume that at x0 = (0 0)T , a modified Newton direction s̃0 is computed where in
place of ∇2f(x0), we use the modified Hessian matrix ∇2f(x0) +νI for some scalar ν and
where I is the 2×2 identity matrix. Determine the range of ν values that would make this
modified Newton direction s̃0 suitable for minimizing f(x) from x0 (when a linesearch is
allowed along this modified Newton direction). [Marks 4]
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4. Consider the trust-region subproblem

min
s∈Rn

m(s) = c+ sT g +
1

2
sTHs subject to ‖s‖ 6 ∆ (3)

where c ∈ R, g ∈ Rn, g 6= 0, and H is an n × n symmetric matrix, where ‖ · ‖ denotes the
Euclidean vector norm and ∆ > 0.

(a) Let the Cauchy point sC for (3) be defined as sC = −αCg where αC = arg minα>0m(−αg)
subject to ‖−αg‖ 6 ∆. Calculate an explicit expression for sC as a function of g, H and
∆. [Marks 5]

(b) State (without proof) the necessary and sufficient optimality conditions that hold at a
global minimizer s∗ of (3). [Marks 5]

(c) In (3), let n = 3, c = 0, ∆ = 1 and

H =

 1 0 0
0 2 0
0 0 −1

 and g =

 1
0
1

 . (4)

For these values, calculate

1. the Cauchy point of (3);

2. the global minimizer of (3);

3. the global minimizer of (3) when s is further constrained to belong to the subspace
spanned by the vectors g and Hg.

Briefly compare the resulting decreases m(0) − m(s), where s is each of the calculated
minimizers in (1), (2) and (3) above.
[Marks 15]
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5. (a) A minimization algorithm is applied to

min
(x1,x2,x3)∈R3

x21+x22+x23 subject to x1−1 > 0, x1+4x2−5 > 0, and x1+x3−2 > 0. (5)

It reaches the point (x1, x2, x3)
T = (1, 1, 1)T ; is this point a (local or global) minimizer of

(5)? If not, find a feasible search direction from the point (x1, x2, x3)
T that reduces the

objective function. [Marks 10]

(b) Consider the equality-constrained optimization problem,

min
x∈Rn

f(x) subject to c(x) = 0, (6)

where f : Rn → R and c : Rn → Rm with c(x) = (c1(x), . . . , cm(x))T are continuously
differentiable functions, and m 6 n.

Assuming a suitable constraint qualification holds (that you do not need to define), show
that any local minimizer of (6) is a KKT point of (6). [Marks 15]
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6. (a) Consider the equality-constrained optimization problem,

min
x∈R3

x21 + x22 + x23 subject to x1 + 2x2 + x3 − 1 = 0, (7)

where x = (x1 x2 x3)
T . Calculate the (unconstrained) global minimizer(s) x(σ) of the

quadratic penalty function associated to (7), denoted by Φσ(x), for any σ > 0. Show
that x(σ) converges to the solution x∗ of problem (7), as σ → 0, and find the rate of this
convergence as a function of σ. Let ∇2

xxΦσ(x(σ)) be the Hessian matrix of Φσ evaluated
at x(σ). Show that the condition number of ∇2

xxΦσ(x(σ)) grows unboundedly as σ → 0.
[Marks 11] [Hint for part (a): you may assume (without proof) that the solution of

problem (7) is x∗ =
(
1
6

1
3

1
6

)T
with optimal Lagrange multiplier y∗ = 1

3 .]

(b) Consider the equality-constrained optimization problem,

min
x∈Rn

f(x) subject to c(x) = 0, (8)

where f : Rn → R and c : Rn → Rm with c(x) = (c1(x), . . . , cm(x))T are twice continu-
ously differentiable functions, and m 6 n. Consider the system

Fσ(x, y) :=

(
∇f(x)− J(x)T y

c(x) + σy

)
= 0, (9)

where (x, y) ∈ Rn+m and σ > 0, and ∇f and J denote the gradient of f and the Jacobian
of the constraints c, respectively.

(i) Establish a connection between solutions of the system (9) and stationary points of
the quadratic penalty function Φσ(x) associated to (8). [Marks 4]

(ii) Consider the following primal-dual quadratic penalty method that starts from some
starting point (x0, y0) and σ1 > 0. On each iteration k > 1, starting from (xk−1, yk−1)
and 0 < σk < σk−1, it computes an approximate root (xk, yk) of Fσk(x, y) = 0 such
that

‖Fσk(xk, yk)‖ 6 εk,

where ‖ · ‖ denotes the Euclidean norm and εk > 0. By imposing conditions on εk

and σk, state a theorem of global convergence for this primal-dual quadratic penalty
method. In the conditions of the theorem you state, and assuming that (xk, yk) →
(x∗, y∗) as k →∞, show that x∗ is a KKT point of (8) with multiplier y∗. [Marks
10]
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