B2 Further Numerical Linear Algebra and Continuous Optimization

HILARY TERM 2018
FRIDAY, 20 April 2018, 9.30am to 11.30am

Candidates should submit answers to a maximum of four questions for credit that include an answer to at least one question in each section.

Please start the answer to each question in a new answer booklet.
All questions will carry equal marks.

Do not turn this page until you are told that you may do so

Section A: Further Numerical Linear Algebra

1. Let Π_{m} denote the set of real polynomials of degree m or less.
(a) [6 marks] Given $A \in \mathbb{R}^{n \times n}$ and $r \in \mathbb{R}^{n}$, what are the Krylov subspaces $\mathcal{K}_{k}(A, r), k=$ $1,2, \ldots$? For any non-negative integer ℓ, show that if $s=p(A) r$ with $p \in \Pi_{\ell}$, then $s \in \mathcal{K}_{\ell+1}(A, r)$. Calculate all of the Krylov subspaces when

$$
A=\left[\begin{array}{ccc}
1 & 0 & 2 \tag{1}\\
0 & -1 & 0 \\
1 & 1 & 0
\end{array}\right], r=\left[\begin{array}{l}
3 \\
0 \\
0
\end{array}\right]
$$

(b) [1 mark] In general, why are Krylov subspaces more convenient for computation when A is a sparse matrix than when A is a dense matrix?
(c) [9 marks] Without describing the details of the implementation of the method itself, give the criteria which determine the GMRES method for the iterative solution of a linear system $A x=b$, where A is nonsingular. Derive a convergence bound for GMRES which bounds the Euclidean norm of the residual vectors $r_{k}=b-A x_{k}$ for a diagonalisable matrix $A=X \Lambda X^{-1}$, where Λ is the diagonal matrix of eigenvalues of A.
If it happens that $A=A^{T}$, what simplifies in the method?
(d) [9 marks] Now apply GMRES to the specific matrix in (1) together with

$$
b=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right] \text { and } x_{0}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Show that $x_{1}=x_{0}$, and calculate the GMRES residual vectors r_{2} and r_{3}. In fact the eigenvalues of A are $2,-1,-1$. Reconcile the convergence bound that you have derived with the residuals that you find.
2. The Conjugate Gradient method: choose $x_{0}, r_{0}=b-A x_{0}=p_{0}$ and for $k=0,1,2, \ldots$

$$
\begin{aligned}
\alpha_{k} & =p_{k}^{T} r_{k} / p_{k}^{T} A p_{k} \\
x_{k+1} & =x_{k}+\alpha_{k} p_{k} \\
r_{k+1} & =r_{k}-\alpha_{k} A p_{k} \\
& \text { if } r_{k+1}=0, \text { stop : } x_{k+1} \text { is the solution } \\
\beta_{k} & =-p_{k}^{T} A r_{k+1} / p_{k}^{T} A p_{k} \\
p_{k+1} & =r_{k+1}+\beta_{k} p_{k}
\end{aligned}
$$

is an iterative method for the solution of linear systems of equations, $A x=b$.
(a) [3 marks] What properties must the matrix $A \in \mathbb{R}^{n \times n}$ have for the Conjugate Gradient method to be robustly applicable? What quantity is minimised at each iteration of the Conjugate Gradient method?
(b) [16 marks] Given that the residuals, $r_{k}, k=0,1,2, \ldots$ and search directions, $p_{k}, k=$ $0,1,2, \ldots$ generated by the Conjugate Gradient method satisfy the orthogonality relations

$$
\begin{aligned}
r_{k}^{T} p_{j} & =r_{k}^{T} r_{j}=0, j<k \\
p_{k}^{T} A p_{j} & =0, j<k,\left(p_{k}^{T} A p_{k} \neq 0\right)
\end{aligned}
$$

so long as $x_{k} \neq x$, where x is the solution of $A x=b$, prove that

$$
\begin{aligned}
\operatorname{span}\left\{r_{0}, r_{1}, \ldots, r_{k-1}\right\} & =\operatorname{span}\left\{p_{0}, p_{1}, \ldots, p_{k-1}\right\} \\
& =\operatorname{span}\left\{r_{0}, A r_{0}, A^{2} r_{0}, \ldots, A^{k-1} r_{0}\right\}
\end{aligned}
$$

Furthermore, prove that $x_{k}-x_{0} \in \operatorname{span}\left\{r_{0}, A r_{0}, A^{2} r_{0}, \ldots, A^{k-1} r_{0}\right\}$.
(c) [6 marks] If $P \in \mathbb{R}^{n \times n}$ is a symmetric projection matrix (so that $P=P^{T}, P^{2}=P$) and $A=P+2 I$, what is the maximum number of Conjugate Gradient iterations that will be required to solve $A x=b$ with any starting vector, x_{0} ?
If $Q \in \mathbb{R}^{n \times n}$ is a oblique projection matrix (so that $Q \neq Q^{T}, Q^{2}=Q$) and $B=Q+2 I$, what is the maximum number of Conjugate Gradient iterations that will be required to solve $B^{T} B y=c$ with any starting vector, x_{0} ?

Section B: Continuous Optimization

3. (a) Consider the unconstrained optimization problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}} f(x), \tag{1}
\end{equation*}
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuously differentiable and bounded below. Assume that the gradient ∇f of f is Lipschitz continuous with Lipschitz constant $L>0$. Assume that the steepest descent method with linesearch is applied to (1) starting from some point $x^{0} \in \mathbb{R}^{n}$, and where on each iteration $k \geqslant 0$, the stepsize $\alpha^{k}>0$ is computed so as to satisfy the Armijo condition.
State the Armijo condition. Show that, on each iteration $k \geqslant 0$ for which $\nabla f\left(x^{k}\right) \neq 0$, the Armijo condition is satisfied for all stepsize values $\alpha^{k} \in\left(0, \alpha_{\max }\right]$, where $\alpha_{\max }$ is a constant independent of k but dependent on L.
[Marks 10]
Assume that $\alpha^{k}=\alpha_{\max }$ for all $k \geqslant 0$. Show that the resulting steepest descent variant is globally convergent, namely, $\nabla f\left(x^{k}\right) \rightarrow 0$ as $k \rightarrow \infty$.
[Marks 5]
(b) Consider the following function of two variables $x=\left(x_{1} x_{2}\right)^{T}$,

$$
\begin{equation*}
f(x)=\frac{1}{4} x_{1}^{4}+x_{1} x_{2}+\frac{1}{2}\left(1+x_{2}\right)^{2} . \tag{2}
\end{equation*}
$$

Show that Newton's method (with or without linesearch) cannot be applied satisfactorily to minimize $f(x)$ if the starting point for Newton's method is $x^{0}=(00)^{T}$.
[Marks 6]
Now assume that at $x^{0}=(00)^{T}$, a modified Newton direction \tilde{s}^{0} is computed where in place of $\nabla^{2} f\left(x^{0}\right)$, we use the modified Hessian matrix $\nabla^{2} f\left(x^{0}\right)+\nu I$ for some scalar ν and where I is the 2×2 identity matrix. Determine the range of ν values that would make this modified Newton direction \tilde{s}^{0} suitable for minimizing $f(x)$ from x^{0} (when a linesearch is allowed along this modified Newton direction).
[Marks 4]
4. Consider the trust-region subproblem

$$
\begin{equation*}
\min _{s \in \mathbb{R}^{n}} m(s)=c+s^{T} g+\frac{1}{2} s^{T} H s \quad \text { subject to } \quad\|s\| \leqslant \Delta \tag{3}
\end{equation*}
$$

where $c \in \mathbb{R}, g \in \mathbb{R}^{n}, g \neq 0$, and H is an $n \times n$ symmetric matrix, where $\|\cdot\|$ denotes the Euclidean vector norm and $\Delta>0$.
(a) Let the Cauchy point s_{C} for (3) be defined as $s_{C}=-\alpha_{C} g$ where $\alpha_{C}=\arg \min \alpha_{\alpha>0} m(-\alpha g)$ subject to $\|-\alpha g\| \leqslant \Delta$. Calculate an explicit expression for s_{C} as a function of g, H and Δ.
[Marks 5]
(b) State (without proof) the necessary and sufficient optimality conditions that hold at a global minimizer s^{*} of (3).
[Marks 5]
(c) In (3), let $n=3, c=0, \Delta=1$ and

$$
H=\left(\begin{array}{lll}
1 & 0 & 0 \tag{4}\\
0 & 2 & 0 \\
0 & 0 & -1
\end{array}\right) \quad \text { and } \quad g=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

For these values, calculate

1. the Cauchy point of (3);
2. the global minimizer of (3);
3. the global minimizer of (3) when s is further constrained to belong to the subspace spanned by the vectors g and $H g$.
Briefly compare the resulting decreases $m(0)-m(s)$, where s is each of the calculated minimizers in (1), (2) and (3) above.
[Marks 15]
4. (a) A minimization algorithm is applied to

$$
\min _{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}} x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \quad \text { subject to } x_{1}-1 \geqslant 0, x_{1}+4 x_{2}-5 \geqslant 0, \text { and } x_{1}+x_{3}-2 \geqslant 0 .
$$

It reaches the point $\left(\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}\right)^{T}=(1,1,1)^{T}$; is this point a (local or global) minimizer of (5)? If not, find a feasible search direction from the point $\left(\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}\right)^{T}$ that reduces the objective function.
(b) Consider the equality-constrained optimization problem,

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}} f(x) \quad \text { subject to } \quad c(x)=0, \tag{6}
\end{equation*}
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $c: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with $c(x)=\left(c_{1}(x), \ldots, c_{m}(x)\right)^{T}$ are continuously differentiable functions, and $m \leqslant n$.
Assuming a suitable constraint qualification holds (that you do not need to define), show that any local minimizer of (6) is a KKT point of (6).
[Marks 15]
6. (a) Consider the equality-constrained optimization problem,

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{3}} x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \quad \text { subject to } \quad x_{1}+2 x_{2}+x_{3}-1=0, \tag{7}
\end{equation*}
$$

where $x=\left(x_{1} x_{2} x_{3}\right)^{T}$. Calculate the (unconstrained) global minimizer(s) $x(\sigma)$ of the quadratic penalty function associated to (7), denoted by $\Phi_{\sigma}(x)$, for any $\sigma>0$. Show that $x(\sigma)$ converges to the solution x^{*} of problem (7), as $\sigma \rightarrow 0$, and find the rate of this convergence as a function of σ. Let $\nabla_{x x}^{2} \Phi_{\sigma}(x(\sigma))$ be the Hessian matrix of Φ_{σ} evaluated at $x(\sigma)$. Show that the condition number of $\nabla_{x x}^{2} \Phi_{\sigma}(x(\sigma))$ grows unboundedly as $\sigma \rightarrow 0$. [Marks 11] [Hint for part (a): you may assume (without proof) that the solution of problem (7) is $x^{*}=\left(\frac{1}{6} \frac{1}{3} \frac{1}{6}\right)^{T}$ with optimal Lagrange multiplier $y^{*}=\frac{1}{3}$.]
(b) Consider the equality-constrained optimization problem,

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}} f(x) \quad \text { subject to } \quad c(x)=0 \tag{8}
\end{equation*}
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $c: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with $c(x)=\left(c_{1}(x), \ldots, c_{m}(x)\right)^{T}$ are twice continuously differentiable functions, and $m \leqslant n$. Consider the system

$$
\begin{equation*}
F_{\sigma}(x, y):=\binom{\nabla f(x)-J(x)^{T} y}{c(x)+\sigma y}=0 \tag{9}
\end{equation*}
$$

where $(x, y) \in \mathbb{R}^{n+m}$ and $\sigma>0$, and ∇f and J denote the gradient of f and the Jacobian of the constraints c, respectively.
(i) Establish a connection between solutions of the system (9) and stationary points of the quadratic penalty function $\Phi_{\sigma}(x)$ associated to (8).
[Marks 4]
(ii) Consider the following primal-dual quadratic penalty method that starts from some starting point $\left(x^{0}, y^{0}\right)$ and $\sigma^{1}>0$. On each iteration $k \geqslant 1$, starting from $\left(x^{k-1}, y^{k-1}\right)$ and $0<\sigma^{k}<\sigma^{k-1}$, it computes an approximate root $\left(x^{k}, y^{k}\right)$ of $F_{\sigma^{k}}(x, y)=0$ such that

$$
\left\|F_{\sigma^{k}}\left(x^{k}, y^{k}\right)\right\| \leqslant \epsilon^{k}
$$

where $\|\cdot\|$ denotes the Euclidean norm and $\epsilon^{k}>0$. By imposing conditions on ϵ^{k} and σ^{k}, state a theorem of global convergence for this primal-dual quadratic penalty method. In the conditions of the theorem you state, and assuming that $\left(x^{k}, y^{k}\right) \rightarrow$ $\left(x^{*}, y^{*}\right)$ as $k \rightarrow \infty$, show that x^{*} is a KKT point of (8) with multiplier y^{*}. [Marks 10]

